

foundation.

FindMine UAV im humanitären Einsatz

Werner Mayr

Contents

- **1.** Introduction who are we? what's the topic?
- 2. Motivation some facts
- 3. Goal what we want to achieve
- 4. Solution how we achieve it
- 5. FindMine the project frame
- 6. FindMine technology & implementation
- 7. FindMine positioning task
- 8. FindMine testing
- 9. FindMine where we are heading to

Introduction – who we are

Mr. Urs Endress founded in 2015 the

Urs Endress Foundation

www.ue-stiftung.org

- Swiss, non-for-profit foundation
- Seat: Arlesheim near Basel, Switzerland
- Board: guided by Urs Endress and accompanied by seasoned professionals with experiences in hightech sensor R&D and production, company management, international sales experiences, and access to humanitarian organizations
- Topic: Humanitarian demining

Motivation – some facts

- 8605 victims injured or killed people in 2016 (GICHD – Geneva Centre for Humanitarian Demining – gichd.org)
- \rightarrow 8760 h/y \rightarrow \sim 1 person/hour is hit by a mine 24/7
- Victims: 80% civilians, 16% female, 84% male, 42% kids (2016)
- $\boldsymbol{\cdot}$ Victims life-long need medical support and suffer from pains
- Today, an estimated 150.000.000 mines exist
- As mines count: *anti-personnel mines* (APM) and *anti-vehicle mines* (AVM)
- Other explosives are e.g. bombs or grenades. They count as UXO (unexploded ordnance) and are ERW (explosive remnants of war)
- \cdot APM are intended to injure, but often kill. AVM are intended to kill.
- \cdot In > 60 countries one finds APM and AVM

Motivation – some facts

- Worldwide approx. 2.000 km² are contaminated with APM & AVM
- \cdot 2 demining modes:
- → Humanitarian demining:

 \rightarrow Military demining:

only a restricted area, e.g. a corridor, gets cleared ! "clearing": remove it quickly, mostly by blow-up on site

Motivation – some facts

- 2016 clearing rate for APM was 172 km² (GICHD)
- 2017 clearing rate for APM was 134 km² (GICHD)
 - \rightarrow decreasing clearing rate due to entities like Islamic State or Boko Haram
- \cdot Mines remain active for many decades.
- Mines prevent use of agricultural areas.
- \cdot Mines prevent kids to go to school.
- Mines prevent refugees to return back home.
- Mines prevent re-establishment of infrastructure.
- \cdot Mines prevent many other but required issues.

\rightarrow urgent: contribute in accelerating humanitarian demining

Reduce the number of injured and killed people due to mines.

Increase speed for humanitarian deminers to reach their goals.

Do not touch contaminated

surface, but locate mines!

FindMine – 178. DVW-Seminar, 4.-5.2.19, Berlin

© Urs Endress Foundation 2019

→ Apply unmanned airborne vehicles (UAV) as flying platforms for mine detecting sensors and georeference identified mine instances

Solution – the basic idea

Unmanned Airborne Vehicle (UAV), autonomously flying, small dimensions, easy handling

Ground **P**enetrating **S**ynthetic **A**perture **R**adar (GPSAR) with low energy and light weight ...

Solution – the basic idea

... GPSAR as primary sensor for mine localization mounted on an autonomously flying UAV

Solution – how it looks like

→ FindMine-System – the GPSAR-UAV

FindMine - 178. DVW-Seminar, 4.-5.2.19, Berlin

© Urs Endress Foundation 2019

FindMine – the project frame

- FindMine is a R&D-project of the Urs Endress Foundation
- Goal: localize APM and AVM without touching the ground in day&night operation.
- · How? \rightarrow apply UAV technology equipped with appropriate sensors
- Which sensor/s?
- \rightarrow apply ground penetrating radar
- \rightarrow apply complementary sensor technologies FindMine2
- Scientific R&D-team works on radar and UAV issues

Radar

- Institute of Microwaves, University of Ulm, Germany
- Laboratory of MicroElectronics and MicroSystem Technology, University of Applied Sciences, Ulm, Germany

FindMine1

• Autonomous Systems Lab, ETH Zürich, Switzerland

FindMine – the situation

- APM typically buried 0 cm to 10 cm deep; explosion on pressure > 20kg
- AVM typically buried 10 cm to 20 cm deep; explosion on pressure > 120kg
- \rightarrow find objects buried as deep as 20 cm
- \rightarrow objects have metal or plastic bodies
- \rightarrow tripwires or pressure plates used as initiator, partly
- \rightarrow when laid by military, then systematically placed
 - \rightarrow pattern recognition supports detection

foundation

- \cdot Hundreds of different types of mines
- Many sensor technologies were investigated by FindMine, e.g. hyperspectral imaging, thermal imaging, gas sniffing (similar to: dogs, bees, rats), metal detection, ground penetrating radar, others

FindMine – flight situation

Goal: Obtain $\leq \pm 2$ cm accuracy from on-board sensors

FindMine – the measurement system

UAV: DJI Matrice 600 Pro

- Copter: 9.2 kg
- Max. payload: 6 kg
- MTOW: 15.2 kg
- Kalman filter (GNSS/IMU)
- Flight time with payload of 2.5 kg: ~20 min

foundation.

Sensor Module

- 0.5 4.5 GHz FMCW GPSAR
- Lidar / Radar Altimeter
- RTK GNSS (several ones)
- Data Logger (Odroid)
- Weight: ~2.5 kg

FindMine – 1st sensor: GPSAR

ground penetrating synthetic aperture radar (GPSAR)

- 0.5 GHz to 4.5 GHz
- Special emit and receive electronics and special antennas
- Polarimetric measurements
- Sensor payload: 2.5 kg
- Radar signal processing

- Requires between 2 m to 4 m flying height AGL
- High demands on UAV flight control
- UAV platform is at time DJI Matrice 600 Pro
- 3D-flight path to be known within ± 2 cm relative accuracy
- \rightarrow high precision RTK + other sensors \rightarrow enabling autonomous operation
- Ongoing R&D-project since 2016, system now in test
- Important: Radar works on / in dry soil not in water

FindMine – positioning task

Positioning task: deliver $\leq \pm 2$ cm accuracy, SAR-requirement

3D-positioning asks for 3 unknowns X,Y,Z 3 Degrees of Freedom (3DoF)

Challenge: kinematic problem due to moving UAV

3 options identified solving the positioning task:

- \rightarrow External approach
- \rightarrow Internal, or "on-board", approach
- \rightarrow Tag Based Radio Localization reviewed but discarded

FindMine – positioning task

Actually, we've a 6+1 DoF task:

X, Y, Z, roll, pitch, heading, dTsync

- 3 angular values, attitude, get measured with Inertial Measurement Unit (IMU) firmly connected to UAV/SAR
- 3 coordinates get determined, externally or internally, but:

Accuracy of measurements is the key.

Data fusion (= post-processing) of position data and IMU-data is required to solve for 6 DoF

6 DoF must be complemented with SAR-recordings and calibrated phase-centers of SAR antennas

→ synchronize position data with SAR & IMU: **dTsync**

FindMine – external positioning

External approach works and resolves 3DoF task

FindMine – external positioning

External = tachymeter approach – properties:

Mandatorily requires line of sight (LoS)
Highly accurate, up to 2000 m some devices even more
Some tachymeters can search and find "a lost prism"
Some tachymeters can be fed on-line with coordinates where to look to / where to search for the prism
Delivers 3 coordinates X,Y,Z + T_{tachy} (i.e. resolves 3DoF) only!
No georeference; this requires additional hardware.
Robot-Tachymeter: 30 K€ and more (pricing for commercial use)

Open: synchronization with sensors on platform, e.g. SAR, IMU \rightarrow remaining unknown: **Tsync**

FindMine – on-board positioning

RTK+IMU Board

2 GNSS¹ antennas are required

- 1 stationary GNSS antenna = Base
- 1 moving GNSS antenna = Rover Rover-Antenna

Base-Antenna and Base Station GNSS

stationary determines its 3D position over time highly accurate 3D-accuracy of Base: ≤ ±1cm sends correction data to RTK-board highend standard hardware in geospatial industry

or RTK-Antenna

¹ GNSS = Global Navigation Satellite System FindMine – 178. DVW-Seminar, 4.-5.2.19, Berlin

FindMine – on-board positioning

On-board = RTK approach – properties:

No line of sight (LoS) required
→ UAV can operate behind obstacles
Very accurate, up to several thousand meters between Base and Rover
RTK and IMU on 1 board → sync of RTK+IMU is given
Post-processing required; software part of RTK-approach
Post-processing delivers 6 DoF values: X,Y,Z,roll,pitch,heading
Delivers georeference of flight mission area, too.

 $\rightarrow \pm 2$ cm accuracy planimetry, Z ± 2 cm via altimeter

a priori system calibration for unknown dTsync !

FindMine – the remote sensing approach

- 1. Aerial mapping, all georeferenced
 - 1. Digital Surface Model (DSM) generation for 3D-mission planning at 3 m above ground level (AGL)
 - 2. Orthomosaic generation for visualization purposes and updating national and GICHD geospatial data bases
- 2. GPSAR flight mission planning using DSM
- 3. GPSAR remote sensing
 - 1. Collect GPSAR data
 - 2. Determine 3D flight path (reconstruct or on-line)
- 4. GPSAR signal processing
- 5. Repeat steps 2 to 4 with other sensor/s
- 6. Result: target localization and visualization on top of orthomosaic
 - 1. Upload of result into GICHD-database
 - 2. Hand over result hand to demining staff for mine action

FindMine – test site DLR Oberpfaffenhofen

FindMine – we see tripwires

4 corner reflectors 4 tripwires

1 dummy target in the middle

Corn field with tripwires – but where?

FindMine – 2nd sensor: metal detection

Existing metal detectors:

- Very reliable works in water, too
- Made for hand-operation by deminer
- Typical coverage 0.5 m² before advance is possible
- Real time procedure (required due to measurement mimic)
- Requires operation < 5 cm proximity to ground, max. 20 cm MD to object
- Hand-operation and proximity to object cause enormous time efforts in mine search
- Due to measurement mimic since approx. 25 years no major technological advancements appeared

FindMine – 2nd sensor: metal detection

New metal detection technology is required

- 1. New MD-tech made for operation by UAV \rightarrow 24/7
- 2. Double / triple distance MD to object: 40 cm to 60 cm
- 3. Cover large areas, e.g. > 1000 m² in one fly over
 - \rightarrow collect soil properties \rightarrow deep learning
- 4. 2-stage measurement procedure:
 - 1st collect data **2**nd

```
\rightarrow new MD => FindMine2
```


FindMine – where we are heading to

building FindMine3 forest / jungle

Thank you for your attention!

Urs Endress Foundation

Dr.-Ing. Werner Mayr werner.mayr@findmine.org

+49.151.72925209